
Matthew Kaes
Direct Abstraction User Manual

1

Copyright © 2013 Matthew Kaes

Direct Abstraction 15 User Manual

Matthew Kaes

Matthew Kaes
Direct Abstraction User Manual

2

Copyright © 2013 Matthew Kaes

Table of Contents

Using Direct Abstraction: ..4

Running Code:...4

Direct Abstraction IDE:..4

Building Code in the IDE: ..4

Syntax:...5

Comments:..5

Base types: ..5

Nil: ...6

Integer:..6

Double:..6

Strings: ..6

Containers:..7

Reference:...8

Symbols: ..9

Variables: ..9

Globals: ...10

Attributes: ...10

Control Statements: ..11

If Statement: ...11

Else Statement: ...11

Scoping:...12

While statements:...13

For statements:...13

Declarations: ...13

Class Declarations: ..14

Function Declarations: ..14

Operators: ...15

Addition - Subtraction:..15

Multiplication – Division: ..16

Built in functions: ..16

print:..16

print_color: ...16

get_value:..17

Matthew Kaes
Direct Abstraction User Manual

3

Copyright © 2013 Matthew Kaes

get_symbol:...17

Matthew Kaes
Direct Abstraction User Manual

4

Copyright © 2013 Matthew Kaes

Using Direct Abstraction:

 Direct Abstraction is based on two parts; the interpreter which parses you’re code and executes

you’re program, and the abstraction library which informs the interpreter how to perform the required

operations. In most cases the interpreter and the abstraction library are built into one binary file, but

this is not always the case as the interpreter can have added functionality with the use of an extension

library in the form of a .DLL file. To run the interpreter simply have a file named “main.txt” which has

you’re code in plain text format in the same directory as the interpreter and the abstraction library. A

new instance of the interpreter will launch and your code will be loaded into memory. For DOS support

direct abstraction can run natively from the command prompt and can also run natively in Cygwin.

Running Code:

 In order for your code to run it must have a valid entry point. Depending on your version of DA

(direct abstraction) your code will have different entry points. For version of DA older than 11 the entry

point for the code will be the function main. The smallest executable code for DA 11 and above is as

follows.

Direct Abstraction IDE:

 Direct Abstraction comes with a dedicated IDE (Integrated Development Environment) on the

Windows operating system. From the Direct Abstraction IDE you can run all of your code with a click of a

button, choose which version of DA you wish to run under, and manage your code in a simple file like

system. The IDE also comes with features such as syntax highlighting and will embed the require headers

for your code.

Building Code in the IDE:

 When you first start up the IDE you will be met with a stub project that includes a test Main

script. From here you add to the project to run your own code or add new scripts to the project with the

“Add Script” button. The text box above this button will make the name for the new script that you add

to your project. This name is not permanent however and can be changed at any time by modifying the

“#Filename” declaration at the start of your file. Once you are happy with your code you can run it at

any time from the IDE by pressing the “Test Code” button. Testing code does not lock up the IDE and

Matthew Kaes
Direct Abstraction User Manual

5

Copyright © 2013 Matthew Kaes

you are able to spawn multiple test session at the same time by clicking the button multiple times. You

can also change what version of DA you are using by changing the drop down box next to the “Test

Code” button.

Syntax:

 Direct Abstraction has syntax that is similar to most higher level languages such as Ruby and

Python. Direct Abstraction supports weak typing like most of these languages as well so all types are

inferred at runtime.

Comments:

 All comments in Direct Abstraction use the “#” character. All characters after the “#” character

are considered comments and will be stripped out at run time. Directives are also a type of comment at

the start of the file. It is also possible to use a comment mid line by placing a second “#” to terminate

the comment; however this is not supported in all versions of DA.

Base types:

 Direct Abstraction has several base data types. From these base types all other types are built

on. Since in DA you have no control over implicit casting DA follows the “lossless” implicit cast. This

means that base types will only go up to higher information types but never down. All the base times

from lowest order to highest order are; Nil, Integer, Double, String, Container, Reference. From this

order we can easily derive the rules for implicit casting. If an operation takes in an Integer and a Double

the Integer will be converted to a Double and the operation will be performed however the Double will

never be converted to an Integer. You can force a type conversion (explicit casting) by using the

“Convert” function. (See “Built In Library”)

Matthew Kaes
Direct Abstraction User Manual

6

Copyright © 2013 Matthew Kaes

Nil:

 Nil is any non-initialized data. Nil converts into zero when cast into an Integer, 0.0 when cast

into a Double, “nil” when cast to a string, and ‘empty’ when cast into a container. “nil” is also a

registered keyword and can be used to create and return nil whenever you desire. Nil can also be a

byproduct of a function or an operation that didn’t have valid arguments such as “nil + 4” or ““string” /

6”.

Integer:

 Integer is the lowest order base type to hold useful information. The integer type holds onto all

whole numbers from −(263) to 263 – 1. Integers are similar to the “long long int” data type in C/C++.

Double:

 Doubles hold onto and deal with all floating point arithmetic. Doubles take the form of 0.0

where the decimal place is required. If a double is a whole number such as 2 the form of the double

must be 2.0. This resolves issues that could be mistaken for the dot operator (.) and also makes sure that

it is differentiable from an integer.

Strings:

 Strings are created by putting any line of code in quotes (“ “). Strings are not limited in any size

and will grow in memory accordingly in order to match the size required for them. You can manipulate

strings by using the addition operator (+) to append to the string. Strings also support a small list of

special escape characters such as “\n” which will replace the two characters with the newline character

at runtime.

Matthew Kaes
Direct Abstraction User Manual

7

Copyright © 2013 Matthew Kaes

Containers:

 Containers hold any number of objects from Integers, nil objects, doubles, strings, and even

other containers. Containers can hold either a single type of object, or any number of objects.

Containers in this sense are not limited in size or types held. When constructing containers the container

will always allocated and release whatever memory is required in order for the container to operate.

Containers have two operators that can be used on them including the bracket operator ([,]) and the

addition operator (+) that appends an element to the end of the container. When using the addition

operator on two arrays the second container is instead concatenated to the first container and a new

container composed of both sets is returned. Because Direct Abstraction always assures that there is

memory for an array a symbol will be created into a container if the bracket operator is ever used on it

and the maximum required index for the container will become its new size. Even if a new value isn’t

assigned to the memory location the container will still grow. If a container grows and it has no data to

fill with all of the empty space will be padded with “nil” data. Since containers always assure that the

index you are accessing is valid you can use the “nil” keyword as an index to create and empty set.

Matthew Kaes
Direct Abstraction User Manual

8

Copyright © 2013 Matthew Kaes

Reference:

 A reference is created only in two instances, when two variables are coupled with the couple

operator (“:”) and when a dynamic object is created with the “new” keyword. References act like the

object and can be assigned to and used as if it was that object but is technically a different symbol.

References allow for objects to be passed to functions in such a way that the function can affect an

external value rather than relying solely on return values.

Matthew Kaes
Direct Abstraction User Manual

9

Copyright © 2013 Matthew Kaes

Symbols:

 There are three different types of symbols that you can use to store all of your information in

and preform you’re operators on. The three types of operators are variables, globals, and attributes.

These three types of symbols are all the same and have the exact same behavior and the only thing that

differs between them is the scope in which the symbol exists. Variables are function scoped and exist for

the entirety of the function. Globals will remain in effect for the entirety of the program. Attributes are

special and are dynamic object scoped and will remain for as long as the dynamic object that they are

attached to remains in working memory. This means that attributes will be tied to another symbol be it

a variable, a global, or another attribute.

Variables:

 Variables take the form of any regular word that is not a keyword or a registered word (such as a

function or class made by the user). A variable must start with a readable character and can contain

numbers, underscores, and other characters. Variables are function scoped which means that in the

function that they are declared in they are useable in all places. Since variables are function scoped, all

variables used in a function are constructed when the function is called.

Matthew Kaes
Direct Abstraction User Manual

10

Copyright © 2013 Matthew Kaes

Globals:

 Globals have all of the same syntax requirements as variables but require a “$” at the start of
the variable name. Globals can be created anywhere and at any time.

Attributes:

 Attributes have all of the same syntax requirements as variables but require a “@” at the start

of the variable name. Unlike globals and variables, attributes can only be created inside of a class object.

Attributes cannot be created anywhere else in the source code.

Matthew Kaes
Direct Abstraction User Manual

11

Copyright © 2013 Matthew Kaes

Control Statements:

 There are three different types of control statements that are used in Direct Abstraction.

Control statements are used to control the flow of the program and control logic. Control statements fall

into two simple categories, conditionals and loops. Conditionals execute a set of instructions if a certain

condition is validated. If the condition isn’t validated then the code will not be executed. Loops are used

to rerun code multiple times. The number of times the code is run and the exit requirements for a loop

are based on the type of loop used.

If Statement:

 If statement is a conditional that executes if a statement is valid. A valid statement is any

statement that evaluates as “true” when “convert(statement, “boolean”)” is used on it. Nil statements

are considered not valid and are not executed.

Else Statement:

 “Else” statements can be added to the end of an “if” statement. If the “if” statement is passed

an invalid value then the else statement will be executed instead. “Else” statements can only be used in

conjunction with “if” statements.

Matthew Kaes
Direct Abstraction User Manual

12

Copyright © 2013 Matthew Kaes

Scoping:

 Every time a control statement is used it creates its own scope. Scope is defined as blocks of

code to be executed inside of control statements. Unlike languages like C and C++ scope does not affect

variable declarations.

Matthew Kaes
Direct Abstraction User Manual

13

Copyright © 2013 Matthew Kaes

While statements:

 While statements are a loop that will continue to execute as long as the statement it qualifies is

valid. While loops are good at controlling repeated code and setting up persistent programs.

For statements:

 For loops are used to loop over all the values in a container. A variable is given to act as the

element to be used as a reference to each element in the container. If an empty container or a symbol

that is not a container then that means the input is considered not valid and the loop is not executed.

Declarations:

 Declarations are used to inform Direct Abstraction how to handle symbols as objects and how to

call functions in memory. There are two type of declarations used in Direct Abstraction.

Matthew Kaes
Direct Abstraction User Manual

14

Copyright © 2013 Matthew Kaes

Class Declarations:

The first kind of declaration is class declarations. Class declarations tell Direct Abstraction what

symbols should be considered objects instead of variables. Objects can have their own functions

embedded in them and are able to have persistent values inside of them known as attributes.

Function Declarations:

Function declarations tell Direct abstraction that the following symbol is a function and maps to

a segment of code that should be called. At the end of a function declaration should be the arguments

that are to be passed to the function.

Matthew Kaes
Direct Abstraction User Manual

15

Copyright © 2013 Matthew Kaes

Operators:

 Direct Abstraction has support for a number of operators to preform math and other features.

The order in which operators get executed is based on the priority of the operation. Operations with

higher priorities are executed first followed by lower priority operations. If two operations with the

same priority are on the same line then they will be executed from left to right.

Symbol Priority Symbol Priority

Object 11 Addition / Subtraction 5

Range Operator 10 Modulo 4

Array Bracket 9 Dot Operator 4

Function 9 Compare 3

Couple Operator 8 Greater/Less Than 3

Power 7 Assignment 2

Mul / Division 6 Keyword 1

Addition - Subtraction:

 Addition and subtraction are two of the most basic arithmetic functions. Both have a priority of

5. It should be noted that addition is overloaded to have special functionality other than just arithmetic.

When used on strings addition concatenates two strings together making a longer string. When used on

containers addition adds the element to the container.

List of all Direct Abstraction operation priorities

Matthew Kaes
Direct Abstraction User Manual

16

Copyright © 2013 Matthew Kaes

Multiplication – Division:

 Multiplication and division preform the same functionality as they do in other languages. Both

have a priority value of 6. With division if both values are numbers then integer division is preformed

and the returned value is the floor of the division.

Built in functions:

 Direct Abstraction has a number of built in functionality. Since though Direct Abstraction it is

impossible to gain access to low level functionality it has been supplied for the end user.

print:

 Print takes a single argument and prints it out onto the screen in

white.

print_color:

 Print_color takes two arguments. The first argument is the symbol to be printed. The second

dictates the color.

Matthew Kaes
Direct Abstraction User Manual

17

Copyright © 2013 Matthew Kaes

get_value:

 Get_value takes no arguments. Get_value gets a number or a double from stdin.

get_symbol:

 Get_symbol takes no arguments. Get_symbol a string from stdin.

