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Abstract: 
 Direct Abstraction is a combination of several computer science fields including development 
driven interfaces, cross-platform software development, and low level hardware development but has a 
primary focus on high level language development and interpretation. The project was started as a 
proof of concept that a high level language can be fast enough, flexible enough, and powerful enough 
for real world use. Over the course of the project however, a new focus was given on the importance of 
a unified development environment and how absorbing all parts of the development cycle into a single 
system can greatly reduce inefficiencies in the development cycle.  
 

Introduction: 
Developers suffer significant loss of time due to inefficiencies. Most of these inefficiencies fall 

into one of two categories, management and problems with what and how tools are used; Direct 
Abstraction aims to remedy the latter.  
 The total number of hours lost because of issues with either code bugs and toolchain issues is a 
serious problem. Large amounts of time are wasted reinventing the wheel, solving ever emerging bugs, 
and wasting time waiting for compilers and other tools to deliver the products required. Companies 
have gone to great strides to find ways to break down the problem with the toolchain by unifying all 
means of development in the work place. Two notable companies that have managed this are Apple 
with the Xcode development environment [6] and Epic Games with the unreal engine [7]. In both of 
these the user rarely has to leave the environment over the course of the entire project. Companies that 
have successfully managed to do this are able to develop a much more streamlined development 
process and gain a notable edge over their competitors.  Microsoft also made attempts to unify all 
stages of development by adding the XNA library to the Visual C# development environment but has 
now given up on such attempts [8]. Besides a few rare cases a unified development environment is 
difficult to achieve and remains elusive to even the largest companies. Many languages such as Ruby 
and Python try to embrace paradigms that help reduce bugs. Adoption of these languages is slow and 
tools and libraries built around theme are sparse. This makes them less appealing to developers who 
rely on the large number of tools with C and C++ support. 

 Direct Abstraction is an attempt to try and solve these problems by offering cross-platform code 

and tools and a unified built in feature set. By creating a language based on other high level languages 

bugs such as memory leaks can be removed. [9] 
 
 
High Level Overview: 
 Direct Abstraction is a high level scripting language that brings a shared code base to both the 
PC environment and ARM hardware (specifically the STM3240G-EVAL board as of current). Direct 
Abstraction works by offering an entry point for the user to execute code in the form of plain text. In the 
case of the PC version there is an interpreter that has been precompiled and is machine dependent that 
parses the user’s code in a text file and executes it. For the ARM device an already embedded virtual 
machine will look for code on an SD card on boot up to parse and run. In both instances this improves 
development time by removing the need for long compile times and having to deal with complex tool 
chains in order to get the code to build. This also gives the benefit of having a shared code base across 
multiple platforms. Code that would work for the PC machine will run on the ARM device. Due to 
differences in hardware the results vary based on what functionality has hardware support. Since the 
code base is the same for both the PC and the ARM device this means that the developer can write code 
for the end device without ever running the code on the device. Code can be rapidly developed on a PC 
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environment with instant turnaround time for testing and then the final code can simply be ported to 
the final device and work. 
 
 

Premises of Added Abstraction: 
 The user might think that the PC interpreter and the ARM virtual are on is the same but this is 
not true. The end developer and user might not realize that what’s under the hood, nor should they 
care, but they are completely different machines that simply emulate similar behavior. The PC 
interpreter and the ARM virtual machine are completely different even down to the language they are 
written in (The PC’s is built on C++ while ARM is strictly hardware supported C) but the underlying idea 
of how they work are the same. Direct Abstraction simply works by adding a layer of abstraction 
between the user and the hardware or system they are working on. This added layer of abstraction gives 
vastly more control to the interpreter as the user has no direct access to the hardware. The user never 
has to worry about whether or not “print” is supported on the target hardware or how to handle 
memory mapping, the interpreter/virtual machine will worry about that for you. This also aids in 
speeding up development by where you simply have to write the code you want and are sure that all the 
fine grit details are taken care of for you. 

 
  

Development Design: 
 Direct Abstraction is meant to replace the process portion of development and the execution 
stage. The act of unifying and simplifying the process is what allows Direct Abstraction to have such a 

Fig 1) A mindmap of the how the abstraction layer works. By offer the following features the 

developer is removed from the inner workings and nuances of the hardware used by the end 
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large effect of development on the business side of things make it a valuable tool to help maintain cost 
and keep production efficient. Here we will discuss what is required to begin development with Direct 
Abstraction. 

User Interface: 

  
 
 

 
 
End user development is split into three phases, the Software/Development stage, the 

Hardware/Execution stage, and an intermediary Delivery stage.  Whether the user is developing for PC 
or hardware the stages are essentially the same where “SD Card” simply represents the distributables. 
During the development cycle a large amount of work is abstracted from the user allowing them to 
create the program without ever leaving the software/development stage.  

 

The Programing Stage: 
 In the programing stage the developer writes the code. Here code is written into a text file by 
the name of “main.txt” which will be used as the entry point for the code. Any text editor will do as long 
as it can parse and save plain text files without adding any header information or distorting the file in 
anyway. The developer will write in Direct Abstraction Source (DAS). More can be learned about in the 
user manual section. When all of the code has been written is all must be concatenated to the main text 
file. Unlike C/C++ no other files will be linked during the compilation phase so all code must be located 
in the “main.txt” file. To test the code you can simply run the interpreter from the same directory as the 
main file and the code will be immediately executed. For rapid development you can bring the 
interpreter into the same directory as your work space and whenever you wish to test your file you 
simply need to run the interpreter. Once the programming stage is complete you’re main file will be 
your distributable. Currently there is no way to encrypt or compress the main file meaning for now. This 
means programs are distributed in raw text format. 

Fig 2)  Development + User cycle for ARM hardware development. 
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Delivery: 
 The delivery stage is made fairly simple. The main file is the only thing that needs to be 
distributed. There is no compilation to be done or any additional overhead. This makes it easy to patch 
as you simply need to deliver this one file to your users to update your Direct Abstraction program. On 
the PC side you must also deliver the latest Direct Abstraction interpreter along with your main file. 
Once the users have the version of the interpreter you are working with you no longer need to 
distribute. Updates and patches. This creates a lightweight solution to updating similar to dll files for 
C/C++.  

 

Execution: 
 During execution code is parsed and turned into a syntax tree. In versions 8 and higher it is then 
compiled down to bytecode. Bytecode is a stream of characters that informs the interpreter which 
actions to perform. Each segment of bytecode is mapped at runtime to a set of assembly instructions to 
execute the code.  In versions 15 and higher the bytecode is then compiled down into virtual code. 
Virtual code unlike bytecode embeds some assembly addresses right into the stream of characters. This 
lessens the number of steps the interpreter must take to execute the required machine code. By 
lessening the number of steps the interpreter has to take to execute machine code the less overhead it 
has. Code generation happens extremely quickly and is to only be performed once at startup. Bytecode 
and virtual code are never to be recompiled at runtime. Recompiling the code would add more 
overhead at runtime. 

  Error handling is handled here and any syntax errors or runtime errors will be presented at this 
stage. If the user happens to run into a runtime error a detailed block of information must be presented 
with things such as line of occurrence, type of error, time in execution of error, and possible fixes for the 
error. The interpreter will stop execution, clean up and then exit. If a syntax error occurs then it will 
continue to scan syntax but no code will be generated. This means multiple syntax errors can be 
produced but only a single runtime error will be. This feature can improve debugging of a large project 
as syntax errors tend to be numerous. 
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Interpreter 

Design  
 

 

 
The intrepreter has three phases: Parsing, Construction, and Execution. The first two steps 

format the code in such a way as so the interpeter can run the code. The third stage executes executed.  
In the parsing level the text is cleaned up by stripping out any useless information. This level is borken 
up into two sub stages; parser and declerations. The output is then used in the construction stage which 
constructs the logic flow of the program. Here execution and memory management are all 
preprocessed. This level is borken up into three sub stages; Construction, look ups and virtual code for 
versions 15 and higher. This preprocessing saves a large amount of redundent work from being done in 
the execution stage. The construction stage produces preprocsesed code called bytecode and then 
virtual code. Memory tables are preprocessed that contain constant information used at runtime. The 
common table entries include strings (“string pool”) and static arrays.  The preprocessed memory tables 
are then passed to execution. In the execution stage the created bytecode is processed until the code 
runs to and end or an error occures. Once on of these conditions is met the program ends and cleans up 
memory and residual code. 

 

Preprocessing – Stage 1: 
 On start up the interpreter or virtual machine will enter the parsing stage. This is the first of the 
seven stages to execute. The preprocessing stage cleans up the input code to make it easy for following 
stages to parse. To begin preprocessing the main file is first loaded into memory. Comments, extra white 
space, junk code, header files, and pound directives must all handled in this stage. The parser is unaware 
of what symbols are and merely preforms an algorithm on the text.  

The algorithm is as follows. Read in a character and check if it is one of four types of characters. 
These types are number, text, arithmetic, and whitespace. All of these subsets are mutually exclusive. A 
comment section is considered any section between a sharp symbol (#) and a new line character. All text 
in a comment section is to be considered whitespace. If the character is white space replace it and all 

Fig 3) All seven stages of a Direct Abstraction Interpreter. Each layer represents an overall phase. 
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following whitespace with a single space character (value 32). If the section of whitespace contains one 
or more newline characters, replace the section instead with a single newline. If the character is not 
whitespace then it is preserved. If the character before the read character is not of the same type and 
either character is not whitespace then a single space character is added between them.  

Two cases are handled specially. First, if a decimal character (.) is processed and both of its 
neighbors are numbers then the period processed as a number as well. Second, if the character is a 
quote character (“) then all formatting is paused until a second (“) character or a newline is found. This 
preserves the whitespace of strings. Quotes and decimal characters are treated as whitespace when 
they are in comment blocks. This process is continued character by character until the end of the file is 
reached. References to what type each ASCII character is can be found in the user manual. 

Since no logic is ever processed here this stage will never produce a logical error. The only error 
handling the parser stage should preform is in the case that “main.txt” does not exist. As long as the 
main file is found this stage should execute perfectly fine without complaint. Errors such as mismatched 
quotation marks are to be handled in the third stage as syntax errors. Pound directives do not internally 
preform any logic but allow the developer to configure the interpreter in whatever way they desire 
within given parameters.  More information on pound directives can be found in the user manual.  

 

Declarations – Stage 2: 
 After the preprocessing stage a cleaned up version of the source code is passed into the 
declaration stage. Here a second pass is made to find out what user defined functions and classes exist 
in the code. First two global spaces are made for look ups which usually take the form of vectors. These 
two global spaces are for function definitions and class definitions. Each class definition can contain 
multiple function definitions. 

 The standard format for parsing is “def” or “class” followed by the name of the object. If the 
object is prefaced with “def” then it is a function declaration and the rest of the following objects are 
arguments to the function. A newline character is treated as the line delimiter and parsing should end 
after it is encountered. If no other objects are found after the function declaration then the function is 
assumed to take no arguments. Classes are not allowed to be followed by anything other than 
whitespace. If either declaration is prefaced with anything other than whitespace then a 
“BAD_DEFINITION” is thrown. 

 
 

Symbol Handle Data (Fixed Bytecode) Stage 

BAD_ENTERY Crash “main.txt” is not found in directory Stage 1 

BAD_DEFINITION Crash Bad function or class definition Stage 2 

BAD_SYNTAX Continue – End Stage Double operator was encountered Stage 3 

TOO_MANY_ARGS Continue – End Stage Argument pushed into full function Stage 3 

TOO_FEW_ARGS Continue – End Stage Function evaluated with too few args Stage 3 

CONTROL_HANGING Crash End missing Stage 3 

FAILED_DEFINITION Crash Attribute or class in statement Stage 3 

AMBIG_LOOKUP Recoverable More than one possible lookup Stage 4 

 

  

 
Table 1) List of all Direct Abstraction Error Codes 
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Once a definition is found the code will be continued to be parsed until a terminating “end” is 
encountered. This means the parser must keep track of scope even though scope is not processed 
during this stage. This is to prevent an end used to terminate a control statement being perceived as 
terminating the function. Examples can be found in the user manual.  

Subfunctions: 
If the parser is in a class definition then subfunctions must be processed as well. If a function is 

processed as part of a class then it is added to the class definition space and not to the function 
definition space. If a function is declared in a function or a class is declared in a class then a 
“BAD_DEFINITION” is thrown. If two or more functions are defined in the same class with the same 
name then the newest declaration supersedes the older one. There is no standard implementation for 
closures as of yet. 

Attributes: 
 Anywhere in the class the user can define attributes by prefixing a symbol with the “@” 
character. Attributes must be logged and added to the class that they appear in. Attributes are not 
function dependents and can be used in multiple functions owned by the same class. Only one instance 
of each uniquely named attribute is to be added to the class. 

Appending Rules: 
 Once a class has been terminated then it can be reopened with another class definition. If the 
class definition already exists in the class space then it is reopened and new attributes and functions can 
be appended to the class. This means the order in which class definitions appear in the code effect 
which functions have precedence. This means the order in which files are appended to the “main.txt” is 
extremely important. In the specially built Direct Abstraction IDE (Integrated Development Environment) 
files are treated as a database and go in order from top to bottom. Another choice is to append files 
based on alphabetical order. Another good choice is to append them based on the age of the file. 
Because there are so many different ways a logical append can be done that makes the order of files 
essentially undefined Direct Abstraction only accepts one file which is “main.txt”. This makes it so there 
is no ambiguity in the order of which declarations should go. Direct Abstraction editors however are free 
to merge any number of files into a single output of “main.txt”. This means you should consult the 
specifications of the editor for appending order information. You can also avoid the issue altogether by 
programming to the standard and only programming in one file.  

If any errors were thrown in this stage then construction will have undefined behavior. In the 
event of this the interpreter should immediately go to the cleanup stage (stage 7). 

Construction – Stage 3: 
 In the construction stage all of the logic is processed. The construction stage takes the 
preprocessed codes as its input. It will also use the declarations previously created to decide what a 
symbol is. Construction involves three main phases called “symbol interpretation”, “syntax tree 
construction” and “bytecode construction”. Each phase will produce its own unique errors if any occur. 
This gives a more precise error message for tracking down the exact cause of the error.  For each line of 
code syntax tree construction will run followed by bytecode construction. Each triplet of calls will 
produce a single line of bytecode. A line of code is defined as any range of characters between two 
newline characters.  

Symbol Interpretation: 
First we need to establish a symbol class. Since Direct Abstraction is weak typed any symbol 

must become any type at a moment’s notice. Because of this a symbol must have information for every 
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possible runtime time. This includes a pointer to other symbols, an enumeration for the type ID, a 
__int64 for the number data, a string class of some kind, a double for double precision floating point, 
and a boolean. A union can be used for most of the data types in order to keep symbol memory down. It 
is impossible for instance to use both the __int64 and the double so they can be put in a union to save 8 
bytes. Symbol Interpretation starts by loading a group and advancing the code stream by the size of the 
group. A group is defined as any set of characters between two whitespace characters. Special 
exceptions of this are text symbols which are defined as any set of characters encapsulated between 
two quotes. This group is assigned to the string of the symbol. This data will be used for the rest of the 
processing steps. 

The symbol is now given a type based on the characters it contains. The possible types used in 
Direct Abstraction include; string, double, number, boolean, function, class, keyword, container (Vector), 
variable, attribute, global and arithmetic operator. The simplest cases are checked first. If the symbol 
starts with a quote character then it is made string. If it starts with a dollar mark ($) then it’s a global. If 
it starts with an “at” symbol (@) then it’s an attribute. If it starts with a number then it is a double or a 
number depending on if this symbol contains a decimal character. If the first character is an arithmetic 
operator then it is classified as such. A list of arithmetic operators can be found in the user manual. 

If the symbol does not fall into any of these categories it needs to be specially processed to see 
if it matches any of the keywords, built in functions, user define functions, or classes. To check if it’s a 
user defined function or class the symbol is a user defined function or class it needs to be checked 
against all the function and class names registered.  If it matches any of these types then it is to be typed 
accordantly. If it doesn’t fall into any category then it defaults to a local variable and should be 
processed as such.  

Now that a symbol has been typed and it has been given whatever data it contained it now 
needs to be give a priority value. A list of standard priority values is listed below. An updated table can 
always be found in the user manual as well. On top of those standard priority values the open 
parentheses (“(“) add one full level to the priority value (usually 12) and the close parentheses (“)”) 
decrement the priority by one full level. It should also be noted the commas are a special character and 
the type they are given should default to a number and should have the same priority of a constant. The 
reason why will become apparent in the syntax tree construction phase. 

 

Symbol Priority Symbol Priority 

Object 11 Addition / Subtraction 5 

Range Operator 10 Modulo 4 

Array Bracket 9 Dot Operator 4 

Function 9 Compare 3 

Couple Operator 8 Greater/Less Than 3 

Power 7 Assignment 2 

Mul / Division 6 Keyword 1 

 

 

 
All of the current construction is simply so we can form the syntax tree in the next phase. At this 

point we need to actually extract the data from the code and store it into the symbol. For keywords, 
functions, classes, and variables this is simply the index of that symbol based on its memory mapping. 
When it comes to numbers and doubles the symbol needs to be parsed in character by character and 
converted into a base 10 numerical value and then stored in the symbol. For Booleans if the value is 
based on the text string “true” or “false” (case sensitive). The final type strings simply take the symbol as 

Table 2) List of all Direct Abstraction operation priorities 
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is with the quotation marks removed. A simple and efficient way to do this is with a memcpy or similar 
instruction call based on the binding language. The symbol is now fully constructed and can be inserted 
into the syntax tree. 

Variable Registry: 
Variables need to know how they will be treated in memory at execution time. Every time a 

variable or global is found it is checked to see if it’s in its respective space. If it is then the variable will 
have its integer buffer set to its index in the memory space. If not then its name will be appended to the 
end of the memory space and its new index will be added. This means that the memory space for all 
variables is created when the page is in scope. Since Direct Abstraction does not support control 
statement scooping for variables all variables are either function, class, or global scoped. The memory 
space for function scoping is constructed at the start of each function and cleaned up at the end of each 
function. This is to make memory lookup and access for variables much quicker than standard hashing 
used by higher level languages. More about this design decision will be discussed in the execution 
section.  

Syntax Tree Construction: 
The purpose of the syntax tree is to make it so our code is translated into a format known as 

reverse polish notation (also known as postfix notation). This makes it so the code is free of execution 
priority and order. With this notation the Interpreter can create extremely quick stack-based bytecode. 
It is essential that the syntax tree be updated with each new symbol added to assure that the symbols 
are in the proper order. 

 
The syntax tree itself is a lot like a binary tree. It has a root which is the start of the tree and any 

number of leafs. Each leaf will have a pointer to a left and right leaf so that the tree can be constructed. 
It should be noted that this is mostly because most operators have zero stems (a constant) or have two 
stems (most arithmetic operators). This changes when functions get involved where it could have more 
than two arguments. In this case it is easier to have an array of children rather than just two however 
the base of the algorithm works based on this left-right structure of leaf. This means it is simplest to 
treat index zero as left, index one as right and the rest of the indexes as function only arguments.  It is 
also useful to have a parent node pointer, expectually when doing strength reduction however it is not 
required. In the syntax tree nodes closest to the root have the lowest priority with the root being the 
very last thing to be executed for this line of code. The further the node is away from the root the higher 
its priority. All leaf nodes must be constants. It is possible to write in rules to prune the leaf nodes by 
precomputing certain operations.[1] 

 
The algorithm for adding nodes to the syntax tree is similar to updating a red-black tree. If there 

is no node for the root then the new node becomes the root. If there is a root then start the main check 
loop. Here if the node’s priority is greater than the current node and the current node doesn’t have a 
left child then this node is the node’s new right child. If the priority is greater than the current node’s 
and it has a right child then walk to the right child. Otherwise if the node’s priority is less than or equal 
to the priority of the current node then this node becomes the new parent of the current node and the 
current nodes old parent becomes this node’s parent. When the current node is made the child node of 
the new node it is made the left child. This means nodes only acquire left children by this less priority 
mechanic, otherwise nodes only move to the left. This is an extremely simple and efficient way to 
achieve O(n log n) when constructing the syntax tree and preserving the order of operations.  

 
 



Matthew Kaes 
Direct Abstraction 

12 

 

Copyright © 2014 DigiPen(USA) Corporation 

 
How this works for functions is instead of walking to the right child (index 1) you walk first to the 

left child (index 0). Every time you get a new node then you still walk to its left index. This changes when 
a comma operator with less priority then the function passes the function. When this happens the 
comma is not added to the syntax tree. Instead it increments the walking index for the function. In 
example let’s say a function that takes 4 arguments is in the syntax tree and two commas act on the 
node. That means when the next symbol comes by it will walk to index 2. If a comma has higher priority 
than the function it is passed down the tree. This is to allow for stacked function calls to operate 
properly.  

 
 
 
 
If two leaf nodes interact with each other than a “BAD_SYNTAX” error is thrown. This happens 

when two constants are back to back in code. An example of this is “3 + 4 5”. Here the 4 and 5 will 
resolve to the same leaf spot because of the algorithm but since 4 is a leaf node and isn’t allowed to 
have children and error will be thrown. If the symbol is a comma and the function it interacts with 
already has its max arguments than a “TOO_MANY_ARGS” error is thrown. 

Bytecode Construction: 
 At the end of the line (new line character) the syntax tree is considered complete. The syntax 
tree is now evaluated to construct bytecode. Bytecode is abstract executable code used by languages 
such as Java.[5] When evaluating the syntax tree starts at the root. When a node is evaluated it first 
evaluates its children and then itself. This means the interpreter goes from lowest index to largest or in 
the case of most symbols, left then right. This means that the very last symbol to be evaluated is the 
root. This makes sense as based on our rules we are guaranteed that the root is the node with the 
lowest priority. 
 

Fig 3) A sample syntax tree for the equation x = 3 + (4 * y ) ^ 6. Also includes the postfix notation. 
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 When evaluated the symbol needs to write a number of bytes into the bytecode stream. The 
bytecode stream is usually stored as an unsigned char* in order to make encoding simple. Each encoded 
bytecode instruction starts out with a two byte header which is also known as the flag byte. This byte 
informs the interpreter at the execution stage what operation it needs to perform. This also informs the 
interpreter how many bytes the code will have to walk in order to get to the next instruction in the set. 
The next few bytes contain the actual data that is to be processed. An example of this is a symbol that is 
a number and contains the value of 65. Since it is a number the flag bytes will be something like “n” to 
inform the interpreter that it is dealing with a number. Then we will have to encode the data or “A” (the 
ASCII value for 65). This gives us the resulting bytecode of “nA”. This is incorrect however since a 
number in Direct Abstraction needs to be 64 bits (8 bytes). This means we have to encode the whole 
number including the zeros which gives us “n\0\0\0\0\0\0\0A” (little endian). Sometimes the 
interpreter uses the endianness of the target machine. An efficient way to do this is to reinterpret cast 
the unsigned char* for the bytecode into the data type that you want to write into the stream. In this 
case we will reinterpret cast the bytecode stream into an __int64* and then write to the memory 
directly. This is a safer and easier option. 

 

Symbol Code Flag Byte Data (Variable Code) Data (Fixed Bytecode) 

Number ‘N’ 0x4E 0x4E-xxxxxxxx-xxxxxxxx 0x4E-xxxxxxxx-xxxxxxxx 

Double ‘D’ 0x44 0x44-xxxxxxxx-xxxxxxxx 0x44-xxxxxxxx-xxxxxxxx 

String ‘S’ 0x53 0x53 “string” 0x53-0000000-xxxxxxxx 

Variable ‘L’ 0x4C 0x4C-xxxx 0x4C-0000000-0000xxxx 

Global ‘G’ 0x47 0x47-xxxx 0x47-0000000-0000xxxx 

Attribute ‘A’ 0x41 0x41-xxxx 0x41-0000000-0000xxxx 

Keyword ‘K’ Ox4B 0x4B-xx 0x4B-xx00000-00000000 

Built In Func ‘B’ 0x42 0x42-xxyyyy 0x42-xx00000-0000yyyy 

User Func ‘U’ 0x55 0x55-xxyyyy 0x55-xx00000-0000yyyy 

Operator ‘O’ 0x4F 0x4F-xx 0x4F-xx00000-00000000 

 
 
 
 
Variables are special and the name is not stored but the index of the variable and its flag byte. 

For instance if we had a variable named “temporary” and it was the 5th variable to appear in the 
function so far then we would encode it as 0x6C (“l” for local) and 0x05 giving us a bytecode block of 
0x6C05. This means variable are not looked up by name but rather by appearance order index. Globals 
and attributes work the same way but with different flag byte to tell the interpreter which memory 
locations it needs to access for the variable. For instance if we had the variable “$x” and it’s the 5th 
global then we would encode it as 0x67 (“g” for global) and 0x05 giving us a bytecode block of 0x6705. 
Notice that even though temporary and $x have the same index they are not the same variable. This is 
because the variables are located in two different memory locations. The number of bytes used to store 
variable indexes is up to the interpreter implementation but the standard is to use 2 bytes for variables 
allowing for up to 65536 variables to be used per memory space.  

 
 You may have noticed that different types of bytecode blocks have different sizes. This method 
of construction bytecode is called variable sized bytecode. The reason for this is you are only 
transcribing the amount of information needed to resolve the symbol’s data. Say you want to write a 
boolean that is set to true into the stream. You would transcribe into the stream 0x62 (b) and 0x01 

Table 3) A table of all the symbol and bytecode mappings for standard Direct Abstraction 
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(true) giving a bytecode block of 0x6201. Going back to the number with the value 65 we had the 
bytecode block of 0x6E000000000000000A. This is more efficient for space since we include the 
minimum amount of information to resolve the symbol however this makes it clunky at run time. At 
runtime the number of bytes we need to jump is now variable which makes walking the code and using 
control blocks much more complicated. A cure for this is to bad short symbols to get a constant size. This 
method is called fixed sized bytecode. Here our true boolean would code as 0x620100000000000000. It 
takes a lot more memory to store all of that padding but now all of our instructions are DWORD aligned 
which is much nicer and faster for the execution stage to handle. This means implementations have to 
make a memory speed trade off when encoding bytecode. Variable bytecode is currently the standard 
but this changes when virtual code gets involved (see the virtual code stage). 
 
 Once every node has been evaluated we will now have our code transformed into reverse polish 
notation and encoded into bytecode for execution. Now that it’s done the interpreter encode a 
bytecode delimiter in place of the newline delimiter (the current standard is a single “]” in variable size 
bytecode). This delimiter will be used later to inform the interpreter when the line of code is finish 
executing a line so it can clear the stack. This makes it so that each line is its own instance of stack 
execution with a fresh stack being used for each line. Data may not be truly cleared off the stack 
however.  
 

If a function or operator is evaluated and it has too few children than a “TOO_FEW_ARGS” error 
is thrown.  A “TOO_FEW_ARGS” is also thrown if a function or operator is a leaf node. 
“DEVIDED_BY_ZERO” and a few other constant errors can be caught early here rather than at runtime. If 
any errors were thrown in this stage then construction will have undefined behavior. In the event of this 
the interpreter should immediately go to the cleanup stage (stage 7).  

String Pooling: 
 It is possible to encode the entire string object into the bytecode but this is only doing able 
when using variable bytecode. In order to keep the bytecode a fixed length a string pool must be used. 
This applies for virtual code as well (see stage 6). This means a table of strings must be stored in the 
global space accessible at execution time. What is actually encoded into the bytecode is the index of the 
strings position in the string pool so it can be looked up at runtime and copied. This saves space for 
bytecode and can also be used for variable bytecode to keep size down.  

Control Statements: 
 All control statements besides act like branches at a bytecode level. The only exceptions are 
“for” loops that do a little extra as well as branching. To know where to branch you must have your 
bytecode constructed at least to the branch point. Since any number of instructions can be in an “if” 
statement for example it’s impossible to preempt where to jump. Because of this all control statements 
need to be stored in a table of look ups to be filled in later. The same thing applies to user function calls 
since we don’t know where to jump into the bytecode yet. Since bytecode still has to be generated the 
interpreter simply generates a blank slot (0x00000000) and fills it in later with the proper address after 
the matching end has been processed. When an end is processed its address is used to fill in the slot left 
by the control statement. When a control statement evaluates a statement as false it will jump to this 
address. If the end matches a loop (while or for) then the end will have a data block of the address to 
the matching loop and will be encoded. If the end matches an “if” or an “else” then the end is not 
encoded (the “if” or “else” will jump here but do not need a jump back command). This encodes all of 
the branch conditions for the code.  
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Name Type Name Type 

If Flow Control While Flow Control 

For Flow Control End Flow Control 

Else Flow Control New Symbol 

Return Symbol Nil Symbol 

True Symbol False Symbol 

Def Decelerator Class Decelerator 

 

 

User Functions: 
 User functions cannot be resolved during bytecode generation. Since bytecode also act like calls 
on the assembly level you need to know the offset of the function in bytecode (bytecode address). 
Because functions might not have a logical order to them it is impossible to be sure if a user defined 
function is used after it has already been processed. Unlike control statements which only jump forward 
and ends that only jump back, a user function can jump to any place in the code. This means the best 
way to process user functions is to write the header flag byte and an empty slot “0x00000000” followed 
by two more bytes “0x0000” (four bytes for fixed bytecode). The second set of bytes is used to resolve 
the actual number of arguments the function needs (this is unknown until the function is processed). 
The name and index of the function called are stored in a table along with the address in bytecode. The 
table will be used to fill in the blank during stage 4. This will be the address to call and run when the 
function is called. When a function prototype is processed (“def” keyword) the function name and 
address are stored in a second table. This table will be used to resolve the first. 

 

Look up tables – Stage 4: 
 Now that the bytecode has been fully created all of the user defined functions need to be 
processed. To do this the two tables created during bytecode generation are used. Every element in the 
function resolve table will be looked up in the second table and its blank slot will be filled with the 
address stored in the second table. The last two bytes need to also be filled with the number of 
arguments that are to be passed to the function. Every single function call needs to be resolved. In order 
for the bytecode to be considered complete. Once all of the look ups have been resolved the bytecode 
from this point on is considered executable. 

 

Virtual Code – Stage 5:  
At execution time each set of flag byte needs to be resolved, usually by a large case statement. 

Once the statement is resolved it may need further processing before the operation can be executed. 
Common cases of this double processing are arithmetic operators. When an arithmetic bytecode is 
indexed the interpreter must first resolve which bytecode operation it is. After that it needs to also 
resolve which arithmetic operation it is. Once that is all done the operation is finally executed and the 
bytecode is indexed by a variable amount (or nine in the case of fixed bytecode). Virtual code optimizes 
all of this by jumping straight to the function required to execute the code. This is done by encoding the 
proper function pointer  

 

Table 4) a table of all the keywords for standard Direct 



Matthew Kaes 
Direct Abstraction 

16 

 

Copyright © 2014 DigiPen(USA) Corporation 

Virtual code is an optional stage and isn’t required to perform execution. To begin the bytecode 
is reprocessed into a fixed format of twelve bytes. This makes it so every bytecode operation is twelve 
byte aligned. It should be noted that even standard fixed bytecode will need to be expanded by two 
bytes since fixed bytecode is only nine byte aligned. The data blocks are expanded into fixed format 
(padded with zeroes) and the flag byte are expanded too four bytes. Once the expansion and formatting 
is complete the virtual code can be processed. Here the four header bytes are simply replaced with a 
function pointer. This can be done by doing a few special “reinterpret_cast” when writing and calling. 
The mechanic can be found in the source code for the C++ interpreter however the ability to encode 
functions into the bytecode stream varies greatly based on the language and system the interpreter is 
written on. 

 
 To make this possible a few things are need. First of a family of functions will need to be created 
all with the same signature. One function is required for each one of the bytecode operations as well as 
one for each of the arithmetic operations. The standard signature is “void func(virtual_data*)”. Virtual 
data is a structure that contains all of the information required for any operation to execute. The 
structure contains a pointer to the current stack, a pointer to halt execution (usually a boolean), a 
pointer to the local variable buffer, a pointer to the current index, and a pointer to the virtual code 
(usually a char* though other data types can be used to write virtual code). This structure is constructed 
at the start of every execution call and will be used passed to every operation call make it extremely 
fast. 
 
 When encoding the virtual code every set of flag byte are mapped to their corresponding 
function which is encoded as the new “flag byte”. An example of this is our number 65. The bytecode for 
this symbol is “n0000000A”. The function that pushes a number onto the stack is called 
“Number_VCode” so its address will be what is encoded into the virtual code. This gives a virtual block 
of “xxxx0000000A”; where “xxxx” is the address of Number_VCode. It should be noted at this point that 
function addresses change based on how the interpreter executable is loaded into memory by the OS. 
This means that the address value (“xxxx”) will be different every time that the interpreter is run. This 
runtime variance means that virtual code unlike bytecode cannot be preprocessed and save for later 
execution. Virtual code is not only machine dependent but also instance dependent making it useless 
after execution.  
 

It may also be noted that each step bring our code closer to looking like assembly. This is no 
coincidence as the simplest way to get execution on computer architecture is an assembly like format. 
This means as closer we get to raw machine instructions the less overhead we get. The problem with 
this is our virtual code becomes less and less readable to humans making it harder to debug. The code 
we execute also becomes more and more complicated and harder to manage. No further processing of 
code is done because of this and Direct Abstraction stops at virtual code. While it is possible to stop at 
bytecode or compile down to machine code, virtual code is a good tradeoff between speed and 
maintainability. Virtual code helps bridge the gap between interpreter and compiler. 

 

Execution – Stage 6: 
 Execution starts by allocating memory for all of the variables that will be used during this 
execution block. The stack is also created with some initial slots. Execution then varies depending on 
wither virtual code is being executed or bytecode. If virtual code is being executed then all the execution 
block actually runs is a “while” loop with a single call to the first four bytes of the current bytecode 
instruction (bytecode + index). 
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 If bytecode is being executed however then inside the while loop a case statement needs to be 
created. In the case statement each flag byte is processed and its functionality preformed. In the case of 
the operator flag byte the code is off loaded into a second function that has a second case statement 
that decides which operation will be performed.   
 
 When an operation is preformed it may take things of the stack. The symbols are taken off the 
top of the stack. When done operations must always push at least one symbol back onto the stack with 
the exception of the clear operation which clears the stack. Operations such as numbers, variables, and 
strings, do not take anything off of the stack. If a function or operator did not produce a symbol then a 
“nil” symbol is pushed on the stack instead. After the operation the index is incremented to advance to 
the next bytecode; twelve for virtual code, nine for fixed bytecode, and a variable amount depending on 
the instruction for variable sized bytecode. 
 
 When bytecode has finished execution the final symbol on the stack is returned and all the 
memory is cleaned up. Here garbage collection kicks in and all local variables need to be torn down and 
all of their memory freed. This makes it so garbage collection is free and localized. Garbage collection is 
similar to constructors and destructors in C++. It should be noted that the interpreter needs to keep 
track of the number of objects pointing to pointer types. If nothing is pointing to the object it is safe to 
free it.  

 Calling User Functions:  
 Users functions aren’t as simple as a branch like control statements. Instead when a user 
function is called a new instance of the execution stage is called with the new index being the index of 
the user function in bytecode. The new execution stage runs the function call and the arguments of the 
function all are passed as local variables. The new execution stage runs as stated above and can even 
spawn other executions and can even call a new execution on itself (recursion). This makes it so all local 
variables and such are self-contained to the function. When a new execution is spawned it takes care of 
its own local space build up (including the locals passed to it as arguments) and maintains its own stack. 
On exit the execution is responsible for its own clean up as well and should return the last symbol on its 
stack. If the base function (“def main”) returns anything then it should simply be discarded.  

 

Cleanup – Stage 7: 
 Cleanup is the final stage of the interpreter. Here all of the global memory usage is cleaned up 
and everything is checked to make sure it’s consistent. Since pointers are not a problem and arrays 
prevent overrun and underflow, there isn’t much to report at this stage. Execution times and other logs 
can be transcribed at this stage if desired but it isn’t necessary. In interpreters written in C++ or other 
languages where destructors or garbage collection exist it is very possible the cleanup stage will contain 
little if any code. It is possible (and useful) however to use information the interpreter gathered at 
runtime to generate even better code and write it to a file for the user. Cleanup has far more 
information about runtime behavior than any other stage besides execution. Unlike execution however, 
cleanup is allowed to be slower since it has no runtime penalties the user will overly notice. A good use 
for this is cleaning up what are known as “hot loops” and other commonly executed code bits with 
faster code alternatives. This saves time during future executions of the code. 
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 This is all extra however. In practice cleanup’s only responsibility is making sure all allocated 
memory is gracefully taken care of and the final bit of book keeping and error checking comes back 
clean.  
 
 Optimizations:  
 There are many optimizations that can be performed to speed up Direct Abstraction. A lot of 
optimizations are baked into the design decisions of the interpreter itself and are there for considered 
standard optimizations. Standard optimizations are one of the major differences between Direct 
Abstraction implementation versions. There is however still a large amount of room for nonstandard 
optimization that Direct Abstraction makes available to the developer. Over time optimizations tend to 
move from nonstandard to standard as more support is built for them. An example case of this is Virtual 
code execution which is not fully standardized yet but is moving in that direction with version 15. It 
should be noted that all optimizations should not change end user Direct Abstraction behavior. No 
matter which set of optimizations are used the interpreter must still be compliant with the behavior 
rules stated in the user manual.  
 
 Differences between Interpreters:  
 The hardware interpreter runs as its own virtual machine. The virtual machine is very similar to 
running the Java Virtual machine.[5] The hardware interpreter had its own set of challenges. All of the 
functions had to be mapped to library functions on the hardware. This was achieved by using 
peripherals on the hardware. USART over RS232 was used for input. The LCD screen attached to the 
board was used for “print” and “print_color” functions. Still there were a large number of library 
functions that have of yet to be mapped. These differences prevent the software interpreter from 
mapping one to one with the hardware virtual machine. Limitations and challenges with peripherals are 
preventing features from being ported to the hardware for now. 
 
 
DA Compiler:   

Direct Abstraction also supports compiling down into native machine code. This is possible once 
the virtual code has been generated and all control paths resolved. Each virtual code is translated into a 
set of memory and operation assembly instructions. Once the assembly instructions are constructed the 
code is compiled into machine code and filled into a buffer. Currently runtime ahead of time compiling is 
the only means supported. This requires the interpreter to layout memory maps and does not support 
dynamic linking. This means all calls supported are direct far calls to addresses and not resolved jumped 
tables.  

Two main problems prevent direct mapping however. The first is the complexity of Direct 
Abstraction operations. Even simple instructions such as the addition operator (‘+’) is resolved with as 
many as a hundred x86 assembly instructions depending on the version used. This means the complexity 
involved in transcribing Direct Abstraction code to machine code is a lot more complex than transcribing 
languages such as C and C++. This mostly has to do with the weak typing system however garbage 
collection and built in data structures add to the complexity as well. To resolve this complexity in a 
manageable fashion machine code is transcribed in standalone batches of assembly instructions per DA 
instruction. This however limits the ability to optimize the machine code. 

The second problem arises from the fact that Direct Abstraction bytecode and virtual code 
operate on a stack architecture while machine code for chips such as the x86 architecture are most 
efficient with a register architecture. This means special considerations need to be taken to assure 
optimum use of registers. A common example is handling of return values from operations. Rather than 
push return values onto the stack to instead keep them in EAX and immediately use it with the next 
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operation avoiding an intermediary. There are a number of other considerations including stack and 
function memory layouts. For the stack it is more efficient to simply move ESP by the number of bytes 
that will be used in the function rather than make room for them as you need more. This is possible 
since all variables are function scooped and thus the total local variable size is known at the start of the 
function. For functions it is easier to use the method described above is to let the interpreter load the 
functions and simply encode a far CALL to the function pointer address. 

Benefits to Compiling: 
Compiling the dynamic language is the final step in the execution pipeline. Like the other 

execution optimizations (such as bytecode and virtual code) this step provides a boost to raw execution. 
Compiling DA down to local machine code vastly reduces the amount of machine code instructions that 
need to be executed per opcode. Compiling DA doesn’t change how efficient opcodes execute but 
reduces a lot of the overhead of maintaining execution. When working at the machine code level 
optimizations can be taken such as changing from a stack based architecture to a type of register 
architecture. Working at this level also gives you direct control over the stack and function calls. This 
gets the execution closer to the CPU and removes unnecessary overhead. At this level the only thing 
preventing the language from being as fast as C/C++ is the added overhead of the opcodes themselves 
and how efficient they are. The only optimizations that remain past this point focus solely on reducing 
opcode complexity and overhead. 

Compileability of DA: 
DA has a number of design features that make it easier to compile down to raw machine code. 

The first is the ability to know the size of the stack at the start of a function and know that the size will 
be constant. This is due to the fact that all variables in DA are function scooped. Symbols themselves are 
also a static size (usually 0x30) make it very easy to manage stack operations. The symbols also have an 
initial state of all zeroes making it easy to construct symbols by simply memsetting the stack frame to 
0x0. Function calls also accept symbols as only pointers under the hood making it extremely easy to pass 
functions from one context to the next. Types are also made easy to manage by simply moving the 
relevant type byte into the right position. Symbol to symbol assignment is easy to manage as only nine 
bytes need to be copied including eight data bytes (regardless of type) and the type byte. It is also 
possible at this level to reduce symbols down to only 12 bytes (11 bytes on 4 byte alignment) with a 
tradeoff of slower execution speed. 

Several features however are much harder to map to static code. Large amounts of metadata 
need to be pooled in order for proper execution (strings, doubles, floats, addresses, ect.). Also garbage 
collection needs to be executed at the right times and simple missteps in the compile stage can create 
memory leaks that compound with execution time. These problems however can be minimized by 
keeping symbol size at 0x30 bytes allowing data to be kept around until collection time rather than 
having to keep track of the data constantly.  

Compiling Benefits: 
The most noticeable benefits come from memory access instructions such as assignment which 

can be reduced down too as little as three move instructions. Other instructions benefit greatly from the 
increased locality of data and not having to move as much around constantly. The greatest overall 
benefits however come from the fact that you are no longer jumping in and out of functions. With 
bytecode or virtual code execution you must constantly call out to memory locations to preform 
execution and then return simply to go to another location that contains the next instruction. By 
encoding all of the execution code linearly you stop throttling the code by adding unnecessary look ups 
for the execution code speeding up every opcode by at least some factor. 
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Direct Abstraction Encryption:   

Direct Abstraction supports a simple encryption algorithm based on a reduced SHA-2 variant. 
While nowhere near as secure as SHA-2 it is extremely quick. This is important as extra work to 
processing the file would cause the startup of the program to slow down adding undesirable wait time 
between each execution of the file. The method makes use of a private key used by the interpreter 
which is hardcoded for each interpreter implementation. This makes it so encrypted code can only work 
on a certain interpreter family which aids to prevent attacks to decrypt the file. The algorithm also uses 
a number of features such as random keys and feedback to help prevent attacks. 

 
 

Testing Model – SOLID Principles:  
 Direct Abstraction is split into separated stages to help aid in testing and expanding the 
interpreter. All stages of the interpreter are setup in such a way to have minimum dependencies on 
each other. This makes it possible to test each individual stage with its own set of unit test. Each stage 
only requires certain structures such as the global variable map and string pool which can easily be 
mocked and tested using tools such as gmock. Mocks are objects that can be made to create dummy 
functionality for additional dependencies. The only dependence that can’t be mocked is little more than 
a character stream to be processed and most stages only output a character stream. This makes it easy 
to map a certain input to a proper output aiding in testing methods. 
 
 Virtual code if used also added an extra benefit to testing. The execution stage quickly becomes 
the most test heavy part of the interpreter as the complexity grows. Virtual code aids in execution 
testing by separating out all executable functions into standalone functions. This makes it possible to 
test every single execution model in separate to make sure it has the proper output. Gmock helps by 
allowing mocks to be created for the stack and locals.[4] By mocking the locals and stack it is extremely 
easy to test each operator with all possible combinations. Variables and memory access can also be 
managed relatively easily by creating mocks for all other memory spaces besides the one being tested to 
make sure that access is being managed accordingly. 
 
 The hardest systems to test regardless of setup are control statements. Control statements 
manage flow control and there for require some kind of code to move around and operate on. It is very 
hard to make sure construction of control statements and execution of control statements work without 
testing them together. This makes integration test the prime test for control statements. A side effect of 
this testing is it increases the number of dependencies and points of failures. This means control 
statements tend to be the most common point of failure during stability testing. “For” loops tend to 
have the largest amount of dependencies as they require a maintaining and construction of a memory 
space, conditional evaluation, and flow control. All of these dependencies make having full code 
coverage in testing nearly impossible. Large amounts of focus should be put on testing control 
statements when creating a Direct Abstraction compliant interpreter. 

Alternative Testing:  
 Since Direct Abstraction is setup to follow the “SOLID” principles there are a number of testing 
frameworks that are available for use. Each function can be tested separately but it is still recommended 
to use some form of mocks and fakes if gmock is not available. If mocks or fakes are not usable in the 
language of choice used to back the language then extra care for testing should be used. Since the 
language has an infinite number of inputs and an infinite number of outputs testing the language to 
make sure it works is extremely important. Maximizing code coverage is a must with all of the pieces 
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being separate. This is the limit the number of failures that can compound when parts of the interpreter 
framework work together. Without the ability to make sure that each operation and stage works by 
itself, interpreter construction and expansion will quickly become extremely hard to manage and debug. 
 
 For hardware it is recommended to have some kind of output such as RS232 to make sure 
behavior is correct. Tools such as Keil  
was a simple stress test program. The stress test program attempted to have full test coverage. uVision 
can be used and offer minimum debugging environments. 

Test Driven Design:  
 While gmock and unit testing covered things such as memory leaks and improper behavior it 
doesn’t cover real world usage. A number of files were created during the course of development to test 
real world applications. Test programs such as Fibonacci number generators and simple guessing games 
were created to test control statement flow. Simple programs similar to “hello world” were also 
generated as new features were created. Simple sample programs are one of the best ways to do 
integration tests. While they are much harder to debug when an error occurs they make sure to test 
throughput of all stages. 
 
 The most useful program created whenever new features were added they were appended to 
the file and tested. This test helps to make sure the interpreter is stable under large workloads. The 
stress also has a loop that stresses loading and writing data, loops, conditionals, and math functions for 
over a million iterations. This test helps also drive Direct Abstraction optimizations aiming to make the 
language faster and more efficient. This creates a testing balance between features and speed. Some 
versions focus on making the language more robust and stable while others are targeted only on 
speeding up the language. 
 

 
 
 Fig 4) A graph of testing times for the stress test across all Direct Abstraction versions since DA 1.0.  

Execution was tested on an Intel Core i7 M620 @ 2.67GHz with 4 GB of ram on 64bit Windows 7 SP1. 
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A good majority of the speed improvements come from the use of better methods for executing 
the stack. The first notable dip is from version 3 to 4 which was the move from raw execution to tree 
execution. The second dip between 6 and 8 was the changeover to bytecode. The small dip from 12 to 
14 was the introduction of virtual code. The final dip from 18 to 18c was the introduction of the AOT 
compiler.  It’s not always as simple as improving the method of execution for pure speed ups. A lot of 
speed improvements come from decreasing the foot print of operations to allow more opcodes per 
second to be executed. This is done mostly by finding tricks to reduce the amount of information that 
needs to be encoded or decoded for any given operation. 

 

 
 
 
 
 
 
 
Going Further with DA: 
 Direct Abstraction is an ever evolving standard that grows and changes to the challenges that 
need to be. The next step for Direct Abstraction is the addition of more interpreters for varied platforms 
to enable and improve cross-platform ability. Additional features to existing interpreters are also 
planned including graphical bindings for the Window’s interpreter. 
 Besides additional interprets a google chrome plugin is in the works. An operating system with a 
shell script that is Direct Abstraction compliant is also planned to make Direct Abstraction scripts 
executable at an operating system level. Mobil development has also been experimented with and 
interested is expressed in creating an Android interpreter. Mobil development however still seems 
extremely unlikely at this time. If an operating system is not pursued for now then a second ARM virtual 
machine will be the next major development extending embedded development beyond the STM3240G 
board. 
 
 

Fig 5) A graph showing the rapid increase of the number of opcodes can be executed per second. Execution 

was tested on an Intel Core i7 M620 @ 2.67GHz with 4 GB of ram on 64bit Windows 7 SP1. 
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Conclusion: 
 Direct Abstraction has done a lot to bridge the world between standard PC development and 
hardware development. By providing a common interface for multiple environments it is vastly easier to 
develop cross-platform software. Standard interfaces remove the need for expensive tools to develop as 
well vastly reducing the barrier of entry. 
 
 By taking advantage of several design decisions Direct Abstraction remains flexible and fast 
while relatively easy to implement. With virtual code, different bytecode modes, and several 
optimizations to choose from the Direct Abstraction standard gives large amount of room to make an 
interpreter to meet the needs of an environment. Lower memory options for symbols and code size are 
available make Direct Abstraction useful for embedded hardware and web development. 
Implementation specific optimizations and virtual code make it possible to make large speed gains for 
use in games. A complex abstraction layer of built in functions also allow for large amount of code 
offloading onto native language bindings allowing complex code to be speed up and simplified. All of 
this backed with the development friendly higher level language features such as weak typing Direct 
Abstraction can be formed into a great fit for just about any platform and any environment. 
 
Acknowledgements: 
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